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The question of the influence of gyroscopic forces on the stability of steady-state 

motion of a holonomic mechanical system when the forces depend upon the ve- 
locities of only the position coordinates was answered by the Kelvin-Chetaev 

theorems [l] on the influence of gyroscopic and dissipative forces on the stabi- 
lity of equilibrium. However,if the gyroscopic forces depend as well on the ve- 

locities of the ignorable coordinates, then their influence on the stability of 

steady-state motions can, as the two problems in [2] show, prove to be entirely 
different from the influence of gyroscopic forces depending only on the veloci- 

ties of the position coordinates. In this paper we investigate the influence of 

gyroscopic forces depending linearly on the velocities of the generalized coor- 

dinates, including the ignorable ones, on the stability of the steady-state motion 
of a holonomic conservative system. We prove that when the gyroscopic forces 

applied with respect to the ignorable coordinates are given as total time deriva- 
tives of certain functions of the position coordinates, the gyroscopic forces can 
both stabilize as well as destabilize the steady-state motion. Under certain con- 

ditions, this influence is also preserved for the action of dissipative forces depen- 

ding on the velocities of only the position coordinates. In the case of action of 
dissipative forces depending also on the velocities of the ignorable coordinates, 

we have indicated the stability and instability conditions of the steady-state 

motion. Examples are considered. In conclusion, we discuss the conditions under 
which the application of gyroscopic forces to the system is equivalent to adding 
terms depending linearly on the generalized velocities to the Lagrange function. 

1. We consider a holonomic system with geometric constraints. If the independent 
Lagrange coordinates qt and velocities qt’ G dqJdt are taken as the basic variables 
characterizing the system’s state at any instant t, then the system’s equations of mo- 
tion can be written as the Lagrange equations 

d aL aL 
-7-- at aq i aqi = Qi (i =I,. . . , n) 

i.j=l 

Here T is the kinetic energy, U (q) is the force function of the potential forces acting 
on the system, QI (q, q’) are nonpotential generalized forces. We assume further that 
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the coordinates pa are ignorable, i. e. the conditions 

~Lt~q~ = 0 (u=k+f,...,n) (1.2) 

are satisfied and, in addition, the generalized forces QI are independent of the ignorable 
coordinates. If the nonpotential forces corresponding to the ignorable coordinates, Qa = 
0, then Eqs. (1.1) have the first integrals 

~~/~q~. = G, = COlBt (a e k +j,...,n) (3.31 

Ry using integrals (1.3) and applying Routh’s method for disregarding the ignorable co- 
ordinates, the study of the system’s motion can be reduced [I] to the integration of a 
system of 2 (n - k) th-order Routh equations describing the motion of the so-called 
reduced system, which we call system A, and to subsequent quadratures. 

When all the non~nt~l forces Qi = 0 (i = 1,. . . , n), under conditions (1.2) 
and under specified initial conditions Eqs. (1.1) admit of the particular solutious 

Ps = 980, 9s 
. 

= 0, qa’=q’ao (s = 1, . . . , k; a = k $ 1,. . . , n) (1.4) 

describing the system’s steady-state motion,in which the position coordinates q8 and the 
velocities 4=’ of the ignorable coordinates retain constant values, while the ignorable 
coordinates pi+ vary linearly with time. Constants (1.4) are the solutions of the equations 

auaq, =o (s =i,._.,k) (1.5) 
and (1.3) under arbitrarily specified values of constants c,. The constants &a’ alsocan 
be given arbitrarily ; then, allowing for the equalities qs*=O , from Eqs. (1.5) we find 
the values of qaor while from Eqs. (1.3), the values of C,. 

The stability of the steady-state motions can be determined by Routh’s theorem and 
its generalization ~33. An interesting question is that of the infhrence on the stability 
of the system’s steady-state motions (1.4) of the gyroscopic forces 

Qg=igyqj. (i=1, . . . ..n) (1.6) 
j=l 

applied to the system in addition to the potential forces acting ou it. The quantities 

gif = - gjt are assumed to be continuous functions of the position coordinates qI, 
. . ., qr possessing continuous first-order partial derivatives in these variabbs. If for- 
ces (~6) do not depend upon the velocities qa’ of the ignorable coordinates, i.e. all 
B&z = 0 (i = 1,. . ., n, ct = k i- 1, . . . , a), then the forces Qa s 0 fa = 
k-tl,..., n). In this case the influence of the gyroscopic forces on the stability 
of motion (1.4) is completely characterized by the Kelvin-Chetaev theorem fl] on the 
influence of such forces on the stability of the equilibrium position of the reduced sys- 
tem, corresponding to the steady-state motion of the original system. 

In the case of gyroscopic forces depending on qao, some of the coefficients gad are 
nonzero, so that the force Q, Z#E 0 and the first integral (1.3) does not correspond to 
the coordinate qcr . This case, when the Kelvin-Chetaev theorem is not directly appli- 
cable, has not been investigated in the literature ; meanwhile, the influence of such for- 
ces on the steady-state motions’ stability can turn out to be entirely different from that 
of the gyroscopic forces depending on the velocities q,‘ of only the position coordinates 
121. Further on we examine this problem, first, under the assumption that the gyroscopic 
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forces Q, applied to the system along its ignorable coordinates are given as df,Jdi , 
i.e. as total time derivatives of certain continuous functions f, (p;, . . . ,p . possess- 
ing first- and second-order partial derivatives in the position coordinates t’ Qt 8 = i, 
. . . , k), and next, for the more general case of forces (1.6). 

2, We investigate the influence of gyroscopic forces (1.6) on the stability of some 
steady-state motion (1.4). assuming that the coefficients 

3 ar = - #a, = afu./aq8, &pzO (s=i ,..., k; a,P=k+i ,..., n) (2.1) 

and on the steady-state motion being examined we suppress 

& (pll,, * ’ . , &of = 0 (s=1,..., n;a=k+i ,..., a) (2.2) 

Under conditions (2. Z), obviously, Eqs. (1.1) with right-hand sides (1.6) also admit of 
the solution (1.4) being examined. However, instead of the integrals ( 1.3). Eqs. ( 1.1) 
under conditions (1.2) and forces (1.6) and (2.1) now have the first integrals 

auaq; = for (q,,) i- c, (a = k + 1,. . . , n) (2.3) 

Solving Eqs. (2.3) relative to qa’, we find 

(2.4) 

A, is the cofactor of element her in determinant D. From formulas (2.4) we see 
that+ when f, (q&#O the values of qQe* differ from the corresponding values of 
Quo in the absence of forces (1.6) for like values of constants c, in both cases and, 
conversely, different values of constants c, correspond to like values of qmo' . 

Let us consider the function defined by the equality 
7% 

R([lr,Qs’,C~)=L- I: Qor’Va+Ca) 
G4Cfl 

(2.5) 

in whose right-hand side qoa can be replaced by expressions (2.4). Fnnction (2.5) is a 
Routh function [l] if fa = 0 . 

It is easy to see that the equalities 

(8 =i ,...., k, a=k+i ,..., h) 

are valid and, thus, the first k of Eqs. (1.1) with right-hand sides (1.6) beoome 

where, considering (2. I), the gyroscopic forces 

Qs* = Q,+ i: *cc+= ;g,rqr (g=i,...,k) (2.8) 
a=k+l r-1 
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We can investigate the system of Eqs. (2.7) independently of the remaining n - k 

eq~~ons in (1.1). After the integration of Eqs, (2.7) the variables & are found as quad- 
ratures from the last group of Eqs. (2.6). 

Let us consider the structure of Eqs. (2.7). We see that the function (2.5) 

R = Rz + RI + Ro 

RI= i qs’ i Tas(fa+ ~a), Ro=I: u - f i bay(fa+ ca)(fy+cy) 
S=l a=k+1 a,u=k+l 

Using these equalities we rewrite Eq. (2.7) as 

d ah ah 
- - - - = F + i (L + g,,) Qr’ dt aq; aqs (s = 1, . . . ( k) (2.9) 

?.=I 

Here for brevity we have introduced the notation 

(fa + Ca) -f- 2 Tar - 2 Taa] 
(I 

(s,r=f,Z,...k) 

The system with k degrees of freedom, characterized by the Lagrange function (2.5) 
and forces (2.8). is called reduced system R corresponding to the original system with 

n degrees of freedom and characterized by the Lagrange function L and the gyroscopic 

forces (1.6) and (2.1). Allowing for equalities (2.6) and (2.2), it is evident that the 
equilibrium position qr = qso of reduced system R (and also of system A) corresponds 

to the steady-state motion (1.4) being examined of the original system. 

From Eqs; (2.9) we see that the reduced system R is being acted upon by potential 
(the first summand on the right-hand side of (2.9)) and gyroscopic (the remaining sum- 
mands) forces, whereas the potential forces au/aqj and the gyroscopic forces (I. 6) and 

(2.1) act on the original system. Thus, the application of gyroscopic forces (1.6) and 
(2.1) to the original system results in potential and gyroscopic forces, additional in com- 
parison with reduced system A , acting on reduced system B . As we see from the ex- 
pressions for Roand rji, these additional forces depend upon the functions f, (a,. . . , 
qlr) defining the gyroscopic forces Qa applied to the original system along the ignora- 

ble coordinates and upon the gyroscopic forces (2.8). Equations (2.7) have the energy 
integral H (q, q’) = R, - R. = const 

equivalent, in light of (2.4), to the energy integral for Eqs. (1.1) with right-hand sides 

(1.6). 
To investigate the stability of the equilibrium position of reduced system R (A) the 

Lagrange theorem and the inverse of the Routb theorem,as well as the Kelvin-Chetaev 
theorem on the influence of gyroscopic and dissipative forces are applicable if ‘the lat- 
ter depend on the velocities q8’ of the position coordinates only. By comparing the 
expressions for the part R. of function (2.5) for the reduced systems A and B it is 
easy to see that their difference with like values of constants c, is 
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i.e. is a sum of a linear and a quadratic form in f, . Hence it follows that by a suitable 
choice of functions f,(ql,. . ., qk) the function R,, for system B can be made to 
have any sign regardless of the sign of the function & for system A. An analogous in- 
ference is valid in the case of like values of qao’, On the basis of the Lagrange theorem 
and the inverse of the Routh theorem,as well as of the Kelvin-Chetaev theorems, we con- 
clude that the gyroscopic forces (1.6) and (2.1) can have both a stabilizing as well as a 
destabilizing influence on the steady-state motion (1.4) of the original system, indepen- 
dently of the parity of the degree of stability of reduced system A. 

Thus, under known conditions the steady-state motion (1.4) of the original system, 
unstable (stable) under the action of potential forces, can be stabilized (des~bil~d) or 
can be made to remain unstable (stable) by applying suitable gyroscopic forces (1.6) and 
(‘2.1) to the system. When dissipative forces, depending. on the velocities q8’ of only the 
position coordinates act on the system, such gyroscopic stabilization is preserved (des- 
troyed) if the function R, for system B has an isolated maximum (does not have a 
maximum and the degree of instability of system R is even) ; if R, does not have a 
maximum and the degree of stability is odd, the steady-state motion remains unstable. 
If R, has a maximum and the dissipative forces act with dissipation total with respect 
to q*’ (8 = 1,. . ., k) , the perturbed motions asymptotically tend to the steady-state 
motion corresponding to the maximum of a, for the perturbed values of constants c, 

c31. 
Example 2. I. We consider a heavy rigid body with one fixed point, whose posi- 

tion in an inertial coordinate system is determined by the Euler angles 0, tp, tp. Assum- 
ing that the body’s center of gravity is located on one of its principal inertial axes, say, 
the z -axis, we write the Lagrange equation as 

L (9, cp, 9, vp’, 9’) = Va [A (9’ sin 9 sin cp + 3’ cos (p12 $- B (9’ sin 9 ccs 9, - 
6’ sin 9,)” + C (cp’ + yl’ cos 0)21 - P z. sin 9 sin v 

where A, B, C are the principal moments of inertia, P is the weight, z, is the coor- 
dinate on the body’s center of gravity. Equations (1.1) with Qi = 0 have first integrals 
(1.3) corresponding to the ignorable coordinate 9 and admit of a particular solution of 
form (1.4) 

9=tpz x/2, 8’=cp’=O, Ji=o (C-‘/IO) (2.10) 

describing tbe permanent rotation with arbitrary angular velocity around a vertically 
located s-axis. BY analyzing the reduced system A it is easy to establish [4] that mo- 
tion (2.10) is stable with respect to 9, cp, 3‘, P’, 9’ if the conditions 

a=~(il-c)-~Pzo-~(A-C)3-P~~>O 

b=$ (A-B)-PP~~=(A-B)~*-P~o>O 

are fulfilled and is unstable if a < 0, b > 0 or a > 0, b < 0. However, if 4 < 0, b < 0, 
then by the Kelvin-Chetaev theorems stabilization is possible by forces gyrapcopic in 
the variables 9’ and cp’ which, however, is destroyed by dissipative forces depending on 
6’ and cp’ . 
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Suppose now that besides the force of gravity the body is also acted upon by gyroscopic 
forces of form ( 1.6) and (2.1) 

QI = k sin cp (9' +$* cos 61, Qa = - k (W sin Q - $,’ sin 13 cos cp) (2.11) 
d 

Qs=-k b (sin 8 sin cp) 

corresponding to the variables Q = 8, 4s = cp, ps = 4, where k - cons& Equations (1.1) 
with right-hand sides (2.11) have a first integral of form (2.3) 

aLfag’ = - k sin 8 sin ‘p + c 

from which we find 

l#’ = [c - k sin 8 sin cp - (A - B) 0’ sin 0 sin cp Cos g, - C cp’ 00s 81 X 
[(A sin B q + B cosZ tp - C) sina 8 + Cl-r 

The integration constant c = Ao + k for motion (2.10). The Lagrange function (2.5) 
for reduced system B is 

R (0, q, 9’, (p’, c) =1/r {[ AB sins 8 + (A co@ cp + B sin* cp) C oos* 8]8’% + 
(A sinscp + B cosscp) Ccp’a sitP8 + 2 (c -k sin 0 sin cp) X 
[(A-B)9’sia8sincpc0sg,+Ccp’00sO]- 
2(~-B)CO*~‘sin8~s9sin~cos~-~c-ks~8sin~)*}X 
[(~sin~~+Bco~~~-~)sina0+C]-~-~~sin8sin~ 

The gyroscopic forces (2.8) are 

Q*r = k sin (p(p’, Q** = - k sin (pe’ 

8y computing the second variation of function R, we find the stability coefficients 
for system B 

k=-Pxof A* =&$--C)(e-k)+Ak]=-Pso+(A-C)of+ok 

In=-Pxo+ /p. ~[([(A-BB)(c-kk)+Ak]= -Pxo+((A-B)ciG+ak 

Consequently, the inequalities 
I, > 0, lz,>O (2.12) 

are sufficient conditions for stability with respect to variables 6, cp, 9’, cp’, \p’ of motion 
(2.10) of the rigid body under the force of gravity. However, if 

h,<O, &>O or x,> 0, h* < O (2.13) 

motion (2.10) is unstable. Stabilization by forces gyroscopic in the variables 8’ and F’ 
ispossibtif h,<O,h,<O. 

With dissipative forces depending upon 8’ and cp’, stability (instability) is preserved 
under conditions (2.12).(2,13) ; if the dissipative forces possess total dissipation, then 
under their action the perturbed motions with conditions (2.12) asymptotically tend to 
the permanent rotation corresponding to the maximum of B. for a perturbed value of 
constant c, while stability is destroyed under the conditions hl < 0, hp < o , By com- 
paring the expressions for hi with the expressions for a and 6, we-see that by a suitable 
choice of the magnitude and sign of constant k we can satisfy conditions (2.12) or (2.13) 
independently of the signs of a and b. 

3. We consider the influence on the stability of a certain steady-state motion (1.4) 
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of the forces 

Qi = 5 &jQ3 
j=l 

. -q+F, (i=&...,n) (3.1) 

being superpositions of gyroscopic forces (1.6), of dissipative forces - &p/dqf’, namely, 
the derivatives of the dissipative nonnegative Rayleigh function 

2rp (4’) = i &jQi’qj’ (&j = pji = GOlISt) , 
i,j=l 

and of forces Ft, constant in magnitude and direction, determined by the equations 

In the considered steady motion the application of constant forces F, to the system in 
addition to gyroscopic and dissipative forces is sufficient [5] for balancing the dissipative 
and, when conditions (2.2) are not satisfied, also the gyroscopic forces. 

We examine simultaneously both classes of gyroscopic forces (1.6) ; the special class 
when conditions (2.1) are satisfied, as well as the more general one when the conditions 

gas = ~f=/~q~ + &, & = - g; fs = i , . . . , k, a = k + f, . . . , a), 

are fulfilled, assuming only the satisfaction of the conditions 

(l$-Jdq,)o = 0, gb = con& (i = 1,. . . , n) (3.4) 

Equations (1.1) with right-hand sides (3.1) do not have integrals of form (1.3) or (2.3), 
nor an energy integral if Q, (q*) + 0 ; however, they do admit of the energy equation 

dH 
ii Fiqi dt=i._ - 29 (cl’) (3.5) 

Instead of variables qo; , under conditions (1.2) and with the generalized forces Q1 tn- 
dependent of the ignorable coordinates, it is expedfent to examine the vdables 

Pa = c7Lraqa- -fa (qb (Z=k+i,...,n) (3.6) 

In the case of the general class of forces (1.6), when the conditions g,, = gia= co-t 

are satisfied, we should set fa (gl) E 0 in equalities (3.6) and in those obtained with 
their aid. By solving Eqs. (3.6) relative to qa’, we obtain equalities of form (2.4), in 
which.as in the preceding formulas,we should merely replace the constants t?= by the vari- 
ables Pa, doing which we represent the system’s energy as 

k 

H (q,, L, pi4 = 4 - Ro = -& 2 &It’!&’ + + i b(P=+fa) h+fd -u 
ij=l a,l3=kf1 

For steady-state motion (1.4) the quantities pa = pa,, = const. In the perturbed 
motion we set 

4s = !?*a + %* Pa = Pa0 + 'la (3.7) 

and we represent the energy in a neighborhood of motion (1.4) as 

H (q*o + x*, ct#, pa0 + Q.7) = (H)o + i qao’4 + Iif(*) (x,9 xiv rla) + * * l 

a=k+l 
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where @)(z8, %', %) is the second variation of the energy, qao’ = - (N?/@&, 
the symbol (a),, denotes the value of quantity a on motion (1.4),and the dots denote 
terms of the order higher than second in X8, x#*, qa, 

From Eq. (3.5) with due regard to Eqs. (3.2) and (3.4) and from the equations for the 
variables Pa, obtained from (1.1) with due regard to (3.1) and (3.6). follows the equa- 
tion 

(3.3) 

in whose right-hand side we can replace the variables Xa’ by their expressions computed 
with equalities (3.7) accounted for 

X’- 
aR 

( > 

aR 
dL -- 

aPa o 
-- 

aPa 

J3y virtue of the general theorems of Liaptnov’s second method [l, 61, on the basis of Eq. 
(3.8) we obtain the following conclusion on stability. 

If the dissipative forces possess total dissipation, then the steady-state motion (1.4) 
being examined is asymptotically stable with respect to the variables qs, qs’, pa (S = 
1 

l * t k; a = k + 1,. . . , n) when the second variation H(s) (X,, x8*, q4) of 
t& system’s energy is a positive definite function of the variables x6, x’~, Q, and is 
unstable when. W(s) (xd, x8*, Q) can take negative values for values of xc, x,*, 7)ar 
arbitrarily small in modulus. These same results are valid for dissipative rorces wim 
partial dissipation if the set 

$ &jX<Xj’ = 0 

ij =I 

does not contain other whole motions of the system besides the motion x, = x8* = 0, 

% = 0. If the dissipative forces are absent or possess partial dissipation, while the func- 
tion H(s) (X8, x8’, Q) is positive definite, then the steady-state motion (1.4) is stable 
with respect to the variables qs, q’,,, pa (s = 1,. . . , k; CC = k i- 1, . . . 9 n). 

Example 3. 1. We continue the consideration of Example 2.1, assuming that in 
addition to the gyroscopic forces (2. Il)the dissipative forces, the derivatives of the posi- 
tive definite function 3 

2T = 2 PijP*‘Pj‘ @*j = P.ji = COKlSt) 

3, j-1 

where the qf are the Euler angles 6, rp, 9, and constant forces Fi = fin, o (i = 1, 2, 3) , 
also act on the heavy rigid bqdy. For this problem the second variation of energy 

2H@) (Xl, xa, Xl', za.,q)=Bn'"+Cn.~+&'+ 

[(A -C)o~ + ok --P~O]2Pf [(A - Qo*+wk ---~oFol~a~ 

is positive definite under conditions (2.12) and is sign variable under conditions (2.13) 
as well as for hl < 0, A4 < 0. Consequently, the permanent rotation (2.10) of the heavy 
rigid body under gyroscopic forces (2.11) and dissipative forces with total dissipation is 
asymptotically stable with respect to the variables 6, cp, 6, cp’, I#‘, if conditions (2.12) 
are fulfilled,and is unstable under conditions (2.13) or when h, < 0, ils < 0. For exam- 
ple, the rotation of a Kowalewska top (A = B = 2%) around the vertical is asymptotic- 
ally stable if ok - ~q > 0 and is unstable if ok - p% < 0. 

4, In conclusion, we dwell briefly on the existence of a generalized potential for 
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gyroscopic forces (1.6). If the Lagrange function L contains the terms 

Liz i Q(ql,***9qn)qi 
i=1 

(4.1) 

linear in the generalized velocities pi’ , where the al (ql,. . . , q,J are assumed to 
be differentiable functions, and if the function L&t is not equaf to the total differen- 
tial of any function of variables qr, then (see n], for example) in the Lagrange equations 
(1.1) to these terms correspond gyroscopic forces, the derivatives of function L1 

Here the coefficients gil = - gli are determined by the equalities 

gij = 8Uj/aqi - aUi/aqj (i, j z 1, . . . . Tt.) 

In particular, if aL,/aq, G 0, then 

and 
&=-t%&7,, &p=o (s=i ,..., k;a,p=k+ I,, . 

Qa sj$ gajqj'= - 
da,(m . . .qJ 

dt 

(4.2) 

(4.3) 

1 n) 

(4.4) 

The reverse statement is valid under definite conditions on the coefficients gij (ql,. . . , 
qn) in expressions (1.6) : the application of gyroscopic forces ( 1.6) to the system is equi- 
valent to adding a certain function L, of form (4. l), linear in the generalized velocities 
qt. to the Lagrange function L . In fact, for this it is necessary and sufficient that the 
forces (1.6) applied to the system have a generalized force function L,, i. e. could be 
represented as the mean parts of equalities (4.2), but this is possible if and only if the 
first-order partial differential Eqs. (4.3), whose left-hand sides are given functions 
gif (q) = - gjl (q), are compatible and have a solution. 

The number n (n - I)/2 of solutions of Eqs. (4.3) does not equal the number n of 
unknown functions at (q) except when n = 3 ; when n = 2 there is only one equa- 
tion and when n > 3 the number of equations is greater than the number of unknowns 

by n (n - 3)/2. For the complete integrability of Eqs. (4.3) it is necessary and suffici- 
ent that they be compatible. Assuming that the given functions grj (q) are of class 
Cl, while the unknown functions ai (q) are of class (7, it is not difficult to obtain the 
conditions for the compatibility of Eqs. (4.3) in the form 

agijlaq, - dg,j/aqi = agit/aqj (i,i,r = I,..., n) (4.5) 

When conditions (4.5) are fulfilled the gyroscopic forces (1.6) have a generalized force 
function of form (4.1). The determination of the functions ai (q) is reduced to ordinary 
differential equations [8]. 

If gfj = - gjf = const , conditions (4.5) are always fulfilled and Eqs. (4.3) have 
the solution 

ei (4) = - + _I giiqi + ci 9 (i = 1,. . . ) n) 

j=l 

(ci are arbitrary constants). If the functions gij = gij (ql, . . ., q,J do not depend 
uponthecoordinatesq,andif gas = 0 (a, p = k + 1,. . ., n), thenwecanseek 
the unknowns ai which also do not depend upon qa. The Eqs. (4.3) for a, and the con- 
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ditions (4.5) for their compatibility take, respectively, the form 

aa, 
a4, = gsa, 

ag,, %a 
ap, = q-- (s,r=l,..., k,a=k+i, 

and if the functions g*, satisfy these conditions, then 
k 

&z (g1, *. - (a-k+i,... 1 4 (4.6) 

We note that in this case the gyroscopic forces Q, have the form (4.4). Thus, for forces 
(4.4) have the generalized force function 

L.i= i aa (h - * *,Qr)fL1 
a=k+1 

Comparing expressions (4.4) with (1.6) and (2.1). we see that a, = --f,-/-Con&, which, 
by the way, is reflected in the form of function (2.5). 

Example 4. 1. For the gyroscopic forces (2.11) of Example 2.1 

g,, = k sin 9, g,, = k cos 8 sin cp, g,, = k sin 6 cos cp 

The function aa (0, 9,) is found by formula (4.6) 

ai(e,cp)=S(glrdB+grsdcp)=ksinOsin~+c 

There is only one Eq. (4.3) with i = 1 and i = 2 for the functions ai (0, cp) (f = 1, 2) 

in view of which there is much arbitrariness in their determination. As function al we 
can take, for example,an arbitrary function ul (0, cp) ; then we find function us as 

a~ (9, 9) = 
s 

% d6 + k0 sin q + xs (cp) 

Thus, if ai = k sin 8 sin cp + xi (e), then an (e, cp) = k (e sin cp - cos 6 coa cp) + XI (Cph 

where the xi are arbitrary functions. 
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